遗传编程
- 中文名
- 遗传编程
- 外文名
- Genetic Programming
- 别名
- 基因编程/GP
- 成果
- 量子计算,电子设计,游戏比赛等
目录
GP的适用范围是非常广泛的,理论上凡是根据多个输入值而得到一个值的
在具体实现上,它有如下一些特点:
(1)GP求解的是一个描述问题的程序(或者说是一个算法)。
(2)GP通常用树型结构来表示,描述相对复杂。
(3)GP的每一代的个体的长度(深度)一般是不同的,即使在同一代中的个体之间的长度(深度)也是不同的。
(4)GP所消耗的资源是不可控的(这里所指的不可控是指不能精确的描述),需要消耗大量的内存空间,因而每一代的进化都比较慢。
遗传编程的首批试验由斯蒂芬·史密斯 (1980)和克拉姆 (1985)发表。约翰·Koza(1992)也写了一本著名的书,来介绍遗传编程。
使用遗传编程的计算机程序可以用很多种编程语言来写成。早期(或者说传统)的GP实现中,程序的指令和数据的值使用树状结构的组织方式,所以那些本来就提供树状组织形式的编程语言最适合与GP,例如Koza使用的Lisp语言。其他形式的GP也被提倡和实现,例如相对简单的适合传统编程语言(例如Fortran, BASIC, andC)的线性遗传编程。有商业化的GP软件把线性遗传编程和汇编语言结合来获得更好的性能,也有的实现方法直接生成汇编程序。
遗传编程所需的计算量非常之大(处理大量候选的计算机程序),以至于在90年代的时候它只能用来解决一些简单的问题。近年来,随着遗传编程技术自身的发展和中央处理器计算能力的指数级提升,GP开始产生了一大批显著的结果。例如在2004年左右,GP在多个领域取得近40项成果:量子计算,电子设计,游戏比赛,排序,搜索等等。这些计算机自动生成的程序(算法)中有些与2000年后人工产生的发明十分类似,甚至有两项结果产生了可以申请专利的新发明。
在90年代,人们普遍认为为遗传编程发展一个理论十分困难,GP在各种搜索技术中也处于劣势。2000年后,GP的理论取得重大发展,建立确切的GP概率模型和马尔可夫链模型已成为可能。遗传编程比遗传算法适用的范围更广(实际上包含了遗传算法)
Juergen Schmidhuber进一步提出了宏遗传编程,一种使用遗传编程来生成一个遗传编程系统的技术。一些评论认为宏遗传编程在理论上不可行,但是需要更多的研究再确认。
附件列表
故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。