故事库-中国往事  > 所属分类  > 
[0] 评论[0] 编辑

波函数

波函数是量子力学中描写微观系统状态的函数。在经典力学中,用质点的位置和动量(或速度)来描写宏观质点的状态,这是质点状态的经典描述方式,它突出了质点的粒子性。由于微观粒子具有波粒二象性,粒子的位置和动量不能同时有确定值(见测不准关系),因而质点状态的经典描述方式不适用于对微观粒子状态的描述,物质波于宏观尺度下表现为对几率波函数的期望值,不确定性失效可忽略不计。

目录

起源

在1920年代与1930年代,理论量子物理学者大致分为两个阵营。第一个阵营的成员主要为

[1]量子力学假设一:对于一个微观体系,他的任何一个状态都可以用一个坐标和时间的连续、单值、平方可积的函数Ψ来描述。Ψ是体系的状态函数,它是所有粒子的坐标函数,也是时间函数。

(Ψ)Ψdτ为时刻t及在体积元dτ内出现的概率。Ψ是归一化的:∫(Ψ)Ψdτ=1式中是对坐标的全部变化区域积分。(注:(Ψ)指Ψ的共厄复数)

[2]量子力学假设二:体系的任何一个可观测力学量A都可与一个线性算符对应,算符按以下规律构成:

(1)坐标q和时间t对应的算符为用q和t来相乘。

(2)与q相关联的动量p的算符{p}=-i(h/(2π))(d/dq)(注:d指偏微分,以后不特别说明都指偏微分)

(3)对任一力学量{A}先用经典方法写成q,p,t的函数A=A(q,p,t)则对应的算符为:{A}=A(q,-i(h/(2π))(d/dq),t)

则:能量算符为:{H}=-h^2/(8π^2m)△+V(其中△为拉普拉斯算符)

△=d^2/dx^2+d^2/dy^2+d^2/dz^2(直角坐标)

△=(1/r^2)d(r^2d/dr)/dr+(1/(r^2sinθ))d(sinθd/dθ)/dθ+(1/(r^2sin^2θ))d^2/dφ^2(球坐标)

角动量算符:

{L[x]}=-i(h/(2π))(yd/dz-zd/dy)

{L[y]}=-i(h/(2π))(zd/dx-xd/dz)

{L[z]}=-i(h/(2π))(xd/dy-yd/dx)

L^2={L[x]}^2+{L[y]}^2+{L[z]}^2

[3]量子力学假设三:若某一力学量A的算符{A}作用于某一状态函数ψ后,等于一常数a乘以ψ,即{A}ψ=aψ则称力学量A对ψ描述的状态有确定的数值a。a称的本征值,ψ称的本征波函数,方程{A}ψ=aψ称的本征方程。

显然,对能量来说,{H}ψ=Eψ即为定态的薛定鄂方程。含时的薛定鄂方程为:{H}Ψ=ih/(2π)dΨ/dt

[4]量子力学假设四:若ψ[1],ψ[2]…ψ[n]为某一微观体系的可能状态,则他们的线性组合∑Cψ也是该体系的可能状态,称ψ的这一性质为叠加原理。

(1)有本征值力学量的平均值:设ψ对应本征值为a,体系处于状态ψ,若ψ已归一化则:

a(平均值)=∫(ψ){A}ψdτ=∑|C|^2a

波函数波函数

(2)无本征值力学量的平均值:

F(平均值)=∫(ψ){F}ψdτ

则定态中所有的力学量平均值都不随时间变化。

如图:为S亚层的轨道3s1电子经过10万次影象合成的波函数图象。

概率诠释

力学量

量子力学中,可观测的力学量A以算符的形式出现,代表对波函数的一种运算。

例如,在坐标表象下,动量算符对应的A称为力学量的本征值,ψ称为力学量的本征态。如果测量位于的本征态ψ上的力学量A,那么它的值是唯一确定的。

定态问题

在量子力学中,一类基本的问题是哈密顿算符不是时间的函数的情况。这时,可以分解成一个只与空间有关的函数和一个只与时间有关的函数乘积,即把它带入薛定谔方程就会得到。

附件列表


0

故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本故事还有待完善,请 编辑

上一篇 内乡缸炉烧饼    下一篇 易立

同义词

暂无同义词
  • 友情链接:
  • 中原企业家
  • 华锐社区
  • 法学学习
  • 故事库
  • 舆情信息
  • 郑州商业观察
  • 美丽中国
  • 药食同源
  • Lovely China
  • 纯欲天花板
  • 留学生