故事库-中国往事  > 所属分类  > 
[0] 评论[0] 编辑

实际波动率

度量波动率的方法,大体上可分为参数法和非参数法两类。参数法指的是利用一定的参数模型来度量波动率,波动率变量是内嵌于模型中的。典型的有ARMA模型、GARCH模型和SV模型。非参数法指的是利用日交易数据按一定的方法直接计算而得。

目录

研究方法研究方法
   度量波动率的方法,大体上可分为参数法

研究方法研究方法
   Andersen等(1998,2001)提出了一种度量波动率的新方法,称之为

实际波动率背景及算法简介

研究方法研究方法
   实际波动率的理论背景主要是基于

实际波动率与GARCH的比较

1、预测精度

研究方法研究方法
   ABDL(2001b)提出了VAR—RV模型,即所谓的长记忆高斯向量自回归对数实际波动率模型,并且用第T日的实际波动率分别和VAR—RV及GARCH(1,1)利用直到T一1日的信息预测第T日的波动率的结果比较,发现VAR—RV的预测精度远优于GARCH(1,1)的预测精度。

因为GARCH(1,1)用到的是直到T一1日的日收益平方,而VAR—RV利用的却是直到T一1日的日内收益数据,它是基于长记忆的动态模型。这是它优于前者的关键。GARCH(1,1)模型在预测精度方面的不足并不是模型本身的错,而是在日收益中的噪声使得GARCH模型在预测方面显得力不从心,相反却体现了用日内数据来预测波动率的功效。正如ABDL(2001a)指出“二次变动理论揭示:在适当的条件下,RV不仅是日收益波动的无偏估计量,而且渐进地没有度量误差。”

2、在处理多变量方面

GARCH模型通常是针对单变量的,虽然多元的ARCH类模型和随机波动模型也被提出了,如[Bollerslv]、Engle、Nelson(1994)、Ghysels、Harvey、E.Renault(1996)和K.Kroner,Engle(Ng)(1998),但这些模型由于受到维度限制问题(curse —of—di.mensionality)而严重影响了它们的实际应用。而RV在处理多元方面显得游刃有余。正如ABDL(2001b)指出“用多元分形求积高斯向量自回归来处理对数实际波动率,和由ARCH类及相关模型所得结果相比,发现前者有惊人的优势。”

附件列表


0

故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本故事还有待完善,请 编辑

上一篇 吉尔菲·西于尔兹松    下一篇 大渡口区教育委员会

同义词

暂无同义词
  • 友情链接:
  • 中原企业家
  • 华锐社区
  • 法学学习
  • 故事库
  • 舆情信息
  • 郑州商业观察
  • 美丽中国
  • 药食同源
  • Lovely China
  • 纯欲天花板
  • 留学生