GHZ 定理
1989 年 Greenberger,Horne 和 Zeilinger (GHZ) 通过分析3-Qubit系统的最大纠缠态提出了 GHZ 定理。
目录
对于 GHZ态,存在一组互相对易的力学量,对这组力学量的测量,量子力学将给出与定域实在理论不相容的测量结果。GHZ 定理是首个研究贝尔非定域性的无不等式方法,其又被称为GHZ 佯谬,因为在该佯谬中,量子力学给出了“+1”“的结果,而经典理论给出“-1”的结果。这个“1=-1”的矛盾论证说明,不存在经典的定域实在模型能够描述量子力学的结果。贝尔不等式与 GHZ定理分别从不同的角度揭示出了贝尔定理。前者属于有不等式形式的贝尔定理,后者属于无不等式形式的贝尔定理。贝尔不等式要用到积分平均,因此它是一种统计上的结果。而 GHZ定理对量子纠缠态的非定域性是从非统计的角度来揭示,它显示出了量子力学与定域实在理论的完全背离。
2000 年,Pan 等人利用光子实验方 案检验了关于3-Qubit GHZ 态的GHZ定理。但是基于光子的 GHZ定理实验检验方案其容错性不太强,比如光子的极化方向很难完美地调节到所需的方向,微小的偏差不可避免;另外光子还不可避免地受到环境退相干的影响。因此发展具有容错性强的 GHZ定理实验检验方案成为人们的一个重要研究目标。
附件列表
故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。