百鸡问题
- 中文名
- 百鸡问题
- 时间
- 5-6世纪
- 出处
- 《张邱建算经》
- 性质
- 数学问题
目录
百鸡问题是一个数学问题,出自中国古代约5—6世纪成书的《
今有鸡翁一,值钱伍;鸡母一,值钱三;鸡鶵三,值钱一。凡百钱买鸡百只,问鸡翁、母、鶵各几何?答曰:鸡翁四,值钱二十;鸡母十八,值钱五十四;鸡鶵七十八,值钱二十六。又答:鸡翁八,值钱四十;鸡 母十一,值钱三十三,鸡鶵八十一,值钱二十七。又答:鸡翁十二,值钱六十;鸡母四、值钱十二;鸡鶵八十 四,值钱二十八。”
原书没有给出解法,只说如果少买7只母鸡,就可多买4只公鸡和3只小鸡。所以只要得出一组答案,就可以推出其余两组答案。中国古算书的著名校勘者
从现代数学观点来看,实际上是一个求不定方程整数解的问题。解法如下:
设公鸡、母鸡、小鸡分别为x、y、z 只,由题意得:
①……x+y+z =100
②……5x+3y+(1/3)z =100
有两个方程,三个未知量,称为不定方程组,有多种解。
令②×3-①得:7x+4y=100;
所以y=(100-7x)/4=25-2x+x/4
令x/4=t, (t为整数)所以x=4t
把x=4t代入7x+4y=100得到:y=25-7t
易得z=75+3t
所以:x=4t
y=25-7t
z=75+3t
因为x,y,z为正整数
所以4t大于0
25-7t大于0
75+3t大于0
解得t大于0小于等于25/7 又因为t为整数
所以t=1时
x =4;y =18;z =78
当t=2时
x =8;y =11;z =81
当t=3时
x =12;y =4;z =84
输出结果为:
公鸡0只,母鸡25只,小鸡75只
公鸡4只,母鸡18只,小鸡78只
公鸡8只,母鸡11只,小鸡81只
公鸡12只,母鸡4只,小鸡84只
程序如下:
附件列表
故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。