故事库-中国往事  > 所属分类  > 
[0] 评论[0] 编辑

太阳耀斑

太阳耀斑是发生在太阳大气局部区域的一种最剧烈的爆发现象,在短时间内释放大量能量,引起局部区域瞬时加热,向外发射各种电磁辐射,并伴随粒子辐射突然增强。由于太阳光球的背景辐射太强,大多数耀斑不能在白光中观测到,辐射增强主要是在某些谱线上,其中以氢的Hα线(波长6563埃,颜色为橙红色)和电离钙的H、K线(波长分别为3968埃和3934埃)最为突出。当用这些单色光监视太阳色球层时,有时会在活动区附近的谱斑中看到局部小区域的突然增亮。增亮区由原有的谱斑亮度在几分钟内迅速增亮几倍甚至几十倍,然后在几十分钟至1~2小时内缓慢恢复至原有的谱斑亮度。1892年7月,美国天文学家海耳首次观测到了太阳耀斑的单色像。20世纪50年代以前,太阳耀斑主要是依靠Hα单色光和可见区的光谱观测,这在地面上比较容易实现。因此,太阳耀斑的早先定义是指Hα单色光看到的太阳色球谱斑中的突然增亮现象,也称为色球爆发。多种手段的综合观测表明,耀斑发生时,从波长短于1埃的γ射线和X射线,直到波长达几公里的射电波段,几乎全波段的电磁辐射都有增强的现象,并发射能量从103电子伏特直到109电子伏特的各种粒子流。其中,电磁辐射增强主要发生在短波辐射(X射线和紫外光)和射电波段。因此,耀斑更准确的定义应包括所有上述一系列的突变现象,而Hα辐射的增强只是耀斑发生的一种次级标志。
中文名
太阳耀斑
外文名
Solar flare
简    称
耀斑
发生部位
太阳色球层
产生原因
太阳磁场能量突然释放造成
发生规律
约11年的周期变化
分    类
光学耀斑、X射线耀斑、质子耀斑
能    量
等同上百亿颗巨型氢弹同时爆炸

目录

耀斑(solar flares),太阳大气中能量的突然释放过程,这种过程主要发生在1.5~2万公里的色球层内,故又称色球爆发。耀斑通常在氢的Ha线单色光照片中看到,巨大的耀斑甚至在可见光照片中也可以看到。太阳耀斑是发生在太阳大气局部区域的一种最剧烈的爆发现象,在短时间内释放大量能量,引起局部区域瞬时加热,向外发射各种电磁辐射,并伴随粒子辐射突然增强。由于太阳光球的背景辐射太强,大多数耀斑不能在白光中观测到,辐射增强主要是在某些谱线上,其中以氢的Hα线(波长6563埃,颜色为橙红色)和电离钙的H、K线(波长分别为3968埃和3934埃)最为突出。

发现

1859年9月1日的上午,英国天文爱好者卡林顿照例在自己的天文观测室里对太阳黑子进行常规的观测。令他不可思议的事情发生了,日面北侧一个大的复杂黑子群附近突然出现了两道极其明亮的白光,其亮度迅速增加,远远超过光球背景,明亮的白光仅维持了几分钟就很快消失了。同在这一天,英国天文学家霍奇森也看到了这次太阳上的突发现象。这是耀斑的第一次记录,同时也是白光耀斑的第一次记录。

成因

太阳大气中充满着磁场,磁场结构越复杂,越容易储存更多的磁能。耀斑发生前所对应的黑子、磁场和Hα观测当储存在磁场中的磁能过多时,会通过太阳爆发活动释放能量,太阳耀斑即是太阳爆发活动的一种形式。长期的观测发现,大多数耀斑都发生在黑子群的上空,且黑子群的结构和磁场极性越复杂,发生大耀斑的几率越高。平均而言,一个正常发展的黑子群几乎几小时就会产生一个耀斑,不过真正对地球有强烈影响的耀斑则很少。

分类

根据观测手段的不同,主要分为光学耀斑、X射线耀斑等。通常,太阳耀斑可见光范围内的单色光观测的耀斑习惯地称为光学耀斑,X射线波段观测的耀斑称为X射线耀斑,与质子事件相对应的耀斑则称为质子耀斑。

光学耀斑(Optical solar flare)

太阳爆发时光学波段亮度突然增强的现象,称为光学耀斑;波

#FormatImgID_0#Hα观测的耀斑爆发(BBSO,1972-08-07)长在3900~7000埃之间。耀斑在氢的Hα线和电离钙的H、K线上最为突出,非常有利于光学耀斑的观测。

X射线耀斑(X-ray flare)

太阳爆发时X射线通量突然增强的现象,称为X射线耀斑;波长在0.01~100埃之间。耀斑在极紫外波段有明显表现,可以用来监测。

质子耀斑(Solar proton flare)

在耀斑发射的粒子事件中,当地球同步轨道探测到的质子能量大于10兆电子伏的通量超过10pfu时,表明这种事件中有很强的质子流,即发生质子事件,与之相对应的源耀斑称为质子耀斑。在日地空间行星际磁场的引导下,日面东半球发射的质子一般到不了地球附近,因此质子耀斑主要发生在日面西半球。质子耀斑大多为M级及以上级别的耀斑,发生后1小时~2小时内能够在地球轨道附近观测到其引发的质子事件。

白光耀斑

白光耀斑是太阳耀斑中极为罕见的一种,由于能在白光范围内观测到而得名。太阳耀斑一般通过白光是不能观测到的,只有通过Hα线和电离钙的H、K线才能观测到。但有时在Hα线所看到的亮区中的一些更小的区域,通过白光也能看到突然增亮现象,持续时间大约几分钟,这就是白光耀斑。1859年卡林顿首次观测的太阳耀斑就是白光耀斑。

能量

耀斑的持续时间在几分钟到几十分钟内,在这短暂的时间里却能释放出1020~1025焦耳的巨大能量,这大约相当于上百亿颗巨型氢弹同时爆炸释放的能量,或者相当于十万至百万次强大火山爆发释放的能量总和,可见其威力之大。不过对于太阳这个巨大的能源来讲,它也不过只占太阳辐射总能量的万分之一左右。

强度

耀斑面积的大小是耀斑辐射规模的重要指数,国际上采用耀斑亮度达到极大时的面积作为耀斑级别的主要依据,同时定性的描述耀斑的极大亮度。根据耀斑的Hα单色光面积大小,光学耀斑分为五级,分别以S、1、2、3、4表示。在级别后加F、N、B分别表示该光学耀斑在Hα线中极大亮度是弱的、普通的、还是强的。所以最大最亮的耀斑是4B,最小最暗的是SF。

地球电离层对太阳软X射线辐射强度变化反应敏感,所以国际上也广泛采用1~8埃的软X射线辐射强度对X射线耀斑进行定级。目前按照美国GOES卫星观测的软X射线峰值流量的量级将耀斑分成五级,分别为A、B、C、M和X,所释放能量依次增大。各等级后面的数值表示X射线峰值流量的具体数值。如,M2级表示耀斑软X射线峰值流量为2×10-2瓦/平方米。一般来讲,C级以下的耀斑均为小耀斑;M级耀斑为中等耀斑;X级耀斑则为大耀斑。2003年10月底至11月初期间的万圣节太阳风暴中(因正值西方万圣节期间而得名),太阳上爆发了一系列大耀斑事件。其中,11月4日爆发的X28级耀斑是GOES卫星观测以来的最大耀斑。

周期

耀斑的发生频次随太阳活动周的变化表现出了11年左右的周期性,耀斑发生随太阳活动周的变化表现出周期性爆发位置随时间呈现蝴蝶图样的分布。在太阳活动极大年,平均每天都有M级以上级别的耀斑发生;而在太阳活动极小年,几乎全年都不发生一个M级以上级别的耀斑。在一个太阳活动周中,X10级及以上级别耀斑大概出现10次左右,X级耀斑约为200次左右,而M级耀斑约为2000次左右。  

影响

对空间飞行的影响

增强的紫外和X射线辐射使电离层中的电子浓度急剧增大,引发电离层突然骚扰,可导致短波无线电信号衰落,甚至中断。增强的紫外辐射被地球大气层直接吸收后,加热大气,大气的温度和密度升高,从而使人造卫星等空间飞行器的轨道发生改变;紫外辐射的增强还使得原子氧的密度突然增加,从而加快了原子氧对航天器表面的剥蚀作用。

对通信的影响

短波通信主要是靠F层的反射进行的。但是,在发生电离层突然骚扰时,由于D层附近的电子密度突然增大,穿过D层射向E层、F层并反射回地面的无线电波受到强烈的吸收,引起电波的衰减。D层电子密度越大,吸收越强。如果D层的电子密度非常大,以致短波通信的最高可用频率也遭到严重吸收,这时通信将发生中断。

对广播信号的影响

在实际生活中,在我们收听广播时,信号会突然变得杂乱,无法收听,有时我们调调频率,信号会清楚些,但有时却仍然无法听清楚,这种状况一般过不了多久就会自己恢复。这可能就是遥远的太阳爆发耀斑对广播信号的影响。

对导航的影响

甚低频导航或通信信号主要是在地面与电离层底部之间的一个波导之间传播,电波在地球和电离层之间来回反射传播,可以实现远距离的传播。当电离层发生突然骚扰时,由于D层的反射高度下降,电离层底部发生变化,导致低频或甚低频信号在给定的发射机和接收机之间的传播相位时延发生变化,严重时能产生几十公里的导航误差。

预报

耀斑预报是按照C级及以下、M级、X级三个等级,对1~3天内耀斑的发生概率及强度进行的短期预报。目前太阳耀斑的物理预报模型还没有建立起来,大都依赖于以黑子为中心的活动区的监测和历史相关资料的统计。  

警报

对于耀斑的警报级别划定,通常以地球同步轨道卫星观测到的太阳X射线流量来表征,这里射线流量指在单位时间、单位面积上接收到的0.1纳米~0.8纳米太阳X射线的辐射能量,单位是瓦/米2。不同量级的太阳X射线流量表示不同级别的X射线耀斑,射线流量大于10-3瓦/米2为强耀斑,发红色警报;射线流量大于10-4瓦/米2为中等耀斑,发橙色警报;射线流量大于10-5瓦/米2为弱耀斑,发黄色警报。太阳X射线耀斑引起地球向阳面电离层电子密度增加,影响短波无线电通信和低频导航系统。耀斑的级别越高,对短波通信和低频导航系统的影响愈严重。

警报级别
指标范围
可能的影响和危害
红色警报
射线流量≥10-3
通信:向阳面大部分地区的短波无线电通信中断1小时~2小时,信号消失;低频导航信号中断1小时~2小时,对向阳面卫星导航产生小的干扰。
橙色警报
10-3>射线流量≥10-4
通信:短波无线电通信大面积受到影响,向阳面信号损失约1小时,低频无线电导航信号强度衰减约1小时。
黄色警报
10-4>射线流量≥10-5
通信:向阳面短波信号强度衰减较小,低频导航信号强度短时衰减。
注:射线流量单位:瓦/米2

事件

2017年9月7日,中国科学院国家空间科学中心发布消息,9月6日晚7时53分,太阳爆发X9.3级大耀斑,引发太阳质子事件和日冕物质抛射。这是自2005年以来,太阳最强的一次爆发活动,打响了新一轮太阳风暴的第一枪。

本次太阳耀斑爆发,是由一个代号为AR2673的太阳黑子群引发的,该黑子群从9月3日以来,在5天的时间内已经爆发了10余次太阳大耀斑,其中9月4日爆发的太阳大耀斑还伴随有日冕物质抛射,并直接导致了中等太阳质子事件。

该次太阳耀斑爆发伴随的日冕物质抛射可能于明晚或者后天到达地球,将会引起地球磁层、电离层和高层大气强烈的扰动,这种巨大的空间环境扰动将可能影响到运行在其中的卫星等飞行器的性能和安全,比如:高层大气密度增加,增大了卫星运行阻力,从而加快卫星轨道的衰变;电离层暴可能会影响短波通信和卫星导航;热等离子体注入可引起卫星表面充电;高能电子暴可能引起卫星深层充电危害等。

太阳风暴爆发期间,代号为AR2673的太阳黑子群仍有可能产生大的爆发。

史上最密集

2017年9月,科学家称太阳正爆发有史以来最密集的太阳耀斑。太阳风暴的辐射是四面八方的,但是当太阳粒子击中地球外层大气时,就会导致大气层升温和膨胀。这意味着卫星信号将难以穿透膨胀的大气层,网络连接、GPS导航、卫星电视和手机信号都将受到影响。

美国宇航局称:“其中一场太阳耀斑是12年来最强烈的,而且所有的太阳耀斑都达到最强级别。这场太阳耀斑被归为X8.2级,X级表示最强级别的太阳耀斑,数字代表的是它的强度级别。X2级太阳风暴的强度是X1级太阳风暴的两倍,以此类推。

X9.3级是目前太阳周期爆发的最强级别太阳耀斑。太阳活动一个循环周期的时间大约11年,太阳活动将在循环周期中达到顶峰然后进入低谷,目前太阳活动正逐渐进入低谷期。太阳进入活跃期时会释放出更多的热量,低谷期则完全相反。

美国宇航局在一份声明中称:“目前的太阳循环周期开始于2008年12月,现在太阳活动的强度正在减弱,并且向低谷期迈进。进入低谷期意味着太阳喷发将越来越罕见,但是历史记录表明此时的太阳喷发仍然是很强烈的。”

附件列表


0

故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本故事还有待完善,请 编辑

上一篇 罗荣桓    下一篇 发票

同义词

暂无同义词
  • 友情链接:
  • 中原企业家
  • 华锐社区
  • 法学学习
  • 故事库
  • 舆情信息
  • 郑州商业观察
  • 美丽中国
  • 药食同源
  • Lovely China
  • 纯欲天花板
  • 留学生