前向纠错
- 中文名
- 前向纠错
- 外文名
- Forward Error Correction
- 也 叫
- 前向纠错码
- 类 型
- 增加数据通讯可信度的方法
目录
大家都知道,数字节目和模拟节目比,效果更清晰,色彩更纯净,通透性更高,画面没有杂质干扰。这都要得益于数字信号出色的抗干扰能力。在数字信号中,为了防止外界信号干扰,保护信号不变异,要进行多重的纠错码设置。数字信号在解码过程中,对错误信号十分敏感,每秒钟只要存在很小的误码,就无法正常解码。而数字卫星信号之所以能顺利播放,又是得益于数字信号中的纠错码的设置。在各种纠错码的设置中,被称做FEC的前向纠错是一个非常重要的防干扰算法。 FEC降低了数字信号的误码率,提高了信号传输的可靠性。因此,在卫视接收的参数中,FEC是个非常重要的数据。
图一:FEC在光通信中的位置
数字信号实际传送的是数据流包括以下三种:
前向纠错ES流:也叫基本码流,包含视频、音频或数据的连续码流。
前向纠错PES流:也叫打包的基本码流,是将基本码流ES流根据需要分成长度不等的数据包,并加上包头形成了打包的基本码流PES流。
前向纠错TS流:也叫传输流,由固定长度为188字节的包组成,含有独立时基的一个或多个节目,适用于误码较多的环境。
以一个产品的流向来比喻上述三种数据流的区别:
若ES流为产品的原材料,那么PES流就是工厂刚刚生产出来的一件产品,而TS流就是经过包装好送到商店柜台或用户手里的商品。如果ES流的重量被成为净重,那么TS流的重量就被称为毛重。这个比喻和FEC有什么关系呢?
从PES流到TS流,这个过程中已经加进去FEC纠错码,可以采用不同的速率的FEC,在DVB-S标准中,规定5种速率—1/2、2/3、3/4、5/6、7/8。以7/8为例,其实际意义是,在一个TS流中,只有7/8的内容是装有节目内容的PES流,而另外的1/8内容,则是用来保护数据流不发生变异的纠错码。仍借用上述比喻,如果整个节目的符码率是毛重的话,则7/8的节目内容好比是净重,而1/8的纠错码就是包装箱的重量。
FEC纠错率越低(即速率越小),则纠错码占据的比例越高。那么同样功率时,对解码的门限要求越低,要求天线口径越小,接收越容易。相反,FEC越高,则纠错码越低,解码门限值越高,天线口径要求越大,接收越困难。那么,既然FEC纠错码率越低,门限越低,天线口径越小,越容易接收,为什么凤凰卫视和韩国阿里郎还要用7/8那么高的FEC码率呢?如果改用1/2的FEC,接收天线不是可以变的更小吗?这就涉及到F
EC的另一个重要作用:如果纠错码过高,那么相应的节目内容占用的码率则更低,一方面降低节目画质,另一方面,如果不降低画质,则只能减少传送节目的数量了。
假如韩国阿里郎节目的符码率是4420,FEC是7/8,而亚洲2号各省节目的符码率也同样是4420,但是FEC则只有3/4,实际上这两个同样符码率的节目,画质并不相同,阿里郎的画质就要比省台的高一些,原因是阿里郎的码流中,只拿出了1/8的码流用来保护数据流不受干扰变化,而亚洲2号的各省台则要拿出比阿里郎多一倍的1/4的码流来保护数据流。但是,如果阿里郎和亚洲2号各省台的节目信号强度相同,亚洲2号的省台接收起来更容易。
电视节目广播前向纠错采用2/3码率格形码、卷积交织码RS码构成的级联码。RS(209,187)分组码是截短的RS(255,233)分组码,可以纠正11B的传输误码。为了减少突发脉冲干扰所造成的连续误码的影响,DMB-T传输系统在内码和外码之间插入了卷积交织编码(B=19,M=22),总时延相当于36个RS(209,187)分组码。
多媒体综合数据业务服务的前向纠错采用的是多层分组乘积码(Multi-levelBlockProductCode)。它是由分组乘积码BPC(3762,2992)构成的一种系统码,是二维分组乘积码BPC(4096,3249)的删余截短,其解码器可以采用高性能Turbo算法。
FEC的使用可以有效提高系统的性能,根据香农定理可以得到噪声信道无误码传输的极限性能(香农限),如图2所示。从图2可以看出,FEC方案的性能主要由编码开销、判决方式、码字方案这三个主要因素决定。
(1)编码开销:校验位长度(n-k)与信息位长度k的比值,称为编码开销。开销越大,FEC方案的理论极限性能越高,但增加并不是线性的,开销越大,开销增加带来的性能提高越小。开销的选择,需要根据具体系统设计的需求来确定。
图二:硬判决FEC和软判决FEC的香农限
(2)判决方式:FEC的译码方式分为硬判决译码和软判决译码两种。硬判决FEC译码器输入为0,1电平,由于其复杂度低,理论成熟,已经广泛应用于多种场景。软判决FEC译码器输入为多级量化电平。在相同码率下,软判决较硬判决有更高的增益,但译码复杂度会成倍增加。微电子技术发展到今天,100G吞吐量的软判决译码已经可以实现。随着传送技术的发展,100G时代快速到来,软判决FEC的研究与应用正日趋成熟,并将在基于相干接收的高速光通信中得到广泛应用。
(3)码字方案:当确定开销和判决方式后,设计优异码字方案,使性能更接近香农极限,是FEC的主要研究课题。目前,软判决LDPC码,由于其良好的纠错性能,且非常适合高并行度实现,逐步成为高速光通信领域主流FEC的方案。
FEC在光纤通信中的应用研究起步较晚,从1988年Grover最早将FEC用于光纤通信开始,光纤通信中的FEC应用可分为三代。
第一代FEC:采用经典的硬判决码字,例如汉明码、BCH码、RS码等。最典型的代表码字为RS(255,239),开销6.69%,当输入BER为1.4E-4时输出BER为1E-13,净编码增益为5.8dB。RS(255,239)已被推荐为大范围长距离通信系统的ITU-T G.709 标准,可以很好匹配STM16帧格式,获得了广泛应用。1996年RS(255,239)被成功用于跨太平洋、大西洋长达7000km的远洋通信系统中,数据速率达到5Gbit/s。
第二代FEC:在经典硬判决码字的基础上,采用级联的方式,并引入了交织、迭代、卷积的技术方法,大大提高了FEC方案的增益性能,可以支撑10G甚至40G系统的传输需求,许多方案性能均达到8dB以上。ITU-T G .975.1中推荐的FEC方案可以作为第二代FEC的代表。
现有10G系统多采用第二代硬判决FEC,采用更大开销的硬判决FEC可以支撑现有系统的平滑升级。例如,10G海缆传输系统目前采用ITU-T G .975.1推荐的开销为6.69%的硬判决FEC方案,若采用20%开销的高性能硬判决FEC,较现有方案可提高1.5dB左右的编码增益,极大改善系统的性能。
第三代FEC:相干接收技术在光通信中的应用使软判决FEC的应用成为可能。采用更大开销(20%或以上)的软判决FEC方案,如Turbo 码、LDPC 码和TPC码,可以获得大于10dB的编码增益,有效支撑40G、100G至400G的长距离传输需求。
图三:光通信FEC的演进
附件列表
故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。