故事库-中国往事  > 所属分类  > 
[0] 评论[0] 编辑

阿基米德

阿基米德(公元前287年—公元前212年),伟大的古希腊哲学家、百科式科学家、数学家、物理学家、力学家,静态力学和流体静力学的奠基人,并且享有“力学之父”的美称,阿基米德和高斯、牛顿并列为世界三大数学家。阿基米德曾说过:“给我一个支点,我就能撬起整个地球。”阿基米德确立了静力学和流体静力学的基本原理。给出许多求几何图形重心,包括由一抛物线和其网平行弦线所围成图形的重心的方法。阿基米德证明物体在液体中所受浮力等于它所排开液体的重量,这一结果后被称为阿基米德原理。他还给出正抛物旋转体浮在液体中平衡稳定的判据。阿基米德发明的机械有引水用的水螺旋,能牵动满载大船的杠杆滑轮机械,能说明日食,月食现象的地球-月球-太阳运行模型。但他认为机械发明比纯数学低级,因而没写这方面的著作。阿基米德还采用不断分割法求椭球体、旋转抛物体等的体积,这种方法已具有积分计算的雏形。
中文名
阿基米德
外文名
Archimedes
国籍 
古希腊 
出生地
叙拉古
出生日期
公元前287年 
逝世日期 
公元前212年   
职业
科学家、数学家、物理学家
主要成就 
几何体表面积和体积的计算方法
发现浮力定理、杠杆原理

目录

阿基米德阿基米德

阿基米德(公元前287年—公元前212年),伟大的

人物出生

公元前287年,阿基米德诞生于希腊

浮力原理

浮力原理简述:物体在液体中所获得的浮力,等于它所排出液体的重量,即:F=G(式中F为物体所受浮力,G为物体排开液体所受重力)。该式变形可得:

(式中ρ为被排开液体密度,g为当地重力加速度,V为排开液体体积)

阿基米德发现浮力阿基米德发现浮力

相传叙拉古赫农王让工匠替他做了一顶纯金的王冠。但是在做好后,国王疑心工匠做的金冠并非纯金,工匠私吞了黄金,但又不能破坏王冠,而这顶金冠确又与当初交给金匠的纯金一样重。这个问题难倒了国王和诸位大臣。经一大臣建议,国王请来阿基米德来检验皇冠。

最初阿基米德对这个问题无计可施。有一天,他在家洗澡,当他坐进澡盆里时,看到水往外溢,突然想到可以用测定固体在水中排水量的办法,来确定金冠的体积。他兴奋地跳出澡盆,连衣服都顾不得穿上就跑了出去,大声喊着“尤里卡!尤里卡!”(ερηκα,意思是“找到了”。)

他经过了进一步的实验以后,便来到了王宫,他把王冠和同等重量的纯金放在盛满水的两个盆里,比较两盆溢出来的水,发现放王冠的盆里溢出来的水比另一盆多。这就说明王冠的体积比相同重量的纯金的体积大,密度不相同,所以证明了王冠里掺进了其他金属。

这次试验的意义远远大过查出金匠欺骗国王,阿基米德从中发现了浮力定律(阿基米德原理):物体在液体中所获得的浮力,等于它所排出液体的重量。(即广为人知的排水法)

杠杆原理

杠杆原理:满足下列三个点的系统,基本上就是杠杆:支点、施力点、受力点。杠杆原理亦称“杠杆平衡条件”:要使杠杆平衡,作用在杠杆上的两个力矩(力与力臂的乘积)大小必须相等。即:动力×动力臂=阻力×阻力臂,用公式可表达为:

(F1表示动力,l1表示动力臂,F2表示阻力,l2表示阻力臂)

海维隆王又遇到了一个棘手的问题:国王替埃及托勒密王造了一艘船,因为太大太重,船无法放进海里,国王就对阿基米德说:“你连地球都举得起来,把一艘船放进海里应该没问题吧?阿基米德叫工匠在船的前后左右安装了一套设计精巧的滑车和杠杆。阿基米德叫100多人在大船前面,抓住一根绳子,他让国王牵动一根绳,大船居然慢慢地滑到海中。国王异常高兴,当众宣布:“从现在起,我要求大家,无论阿基米德说什么,都要相信他!”

机械应用

阿基米德对于机械的研究源自于他在亚历山大城求学时期,有一天阿基米德在久旱的尼罗河边散步,看到农民提水浇地相当费力,经过思考之后他发明了一种利用螺旋作用在水管里旋转而把水吸上来的工具,后世的人叫它做“阿基米德螺旋提水器”。埃及一直到二千年后的现代,还有人使用这种器械。这个工具成了后来螺旋推进器的先祖。

阿基米德非常重视试验,一生设计、制造了许多仪器和机械,值得一提的有举重滑轮、灌地机、扬水机以及军事上用的抛石机等。

当时的欧洲,在工程和日常生活中,经常使用一些简单机械,譬如:螺丝、滑车、杠杆、齿轮等,阿基米德花了许多时间去研究,发现了“杠杆原理”和“力矩”的观念,对于经常使用工具制作机械的阿基米德而言,将理论运用到实际的生活上是轻而易举的。阿基米德极可能是当时全世界对于机械的原理与运用了解最透彻的人。

阿基米德和雅典时期的科学家有着明显的不同,就是他既重视科学的严密性、准确性,要求对每一个问题都进行精确的、合乎逻辑的证明;又非常重视科学知识的实际应用。

数学大师

阿基米德在数学上也有着极为光辉灿烂的成就,特别是在几何学方面。

阿基米德的数学思想中蕴涵微积分,阿基米德的《方法论》中已经“十分接近现代微积分”,这里有对数学上“无穷”的超前研究,贯穿全篇的则是如何将数学模型进行物理上的应用。

他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

阿基米德将欧几里德提出的趋近观念作了有效的运用。他利用“逼近法”算出球面积、球体积、抛物线、椭圆面积,后世的数学家依据这样的“逼近法”加以发展成近代的“微积分”。阿基米德还利用割圆法求得π的值介于3.14163和3.14286之间。

另外他算出球的表面积是其内接最大圆面积的四倍,又导出圆柱内切球体的体积是圆柱体积的三分之二,这个定理就刻在他的墓碑上。

阿基米德研究出螺旋形曲线的性质,现今的“阿基米德螺线”曲线,就是因为纪念他而命名。另外他在《数沙者》一书中,他创造了一套记大数的方法,简化了记数的方式。

阿基米德的几何著作是希腊数学的顶峰。他把欧几里得严格的推理方法与柏拉图鲜艳的丰富想象和谐地结合在一起,达到了至善至美的境界,从而“使得往后由开普勒、卡瓦列利、费马、牛顿、莱布尼茨等人继续培育起来的微积分日趋完美”。

天文研究

阿基米德发展了天文学测量用的十字测角器,并制成了一架测算太阳对向地球角度的仪器。

阿基米德还曾经运用水力制作一座天象仪,球面上有日、月、星辰、五大行星。根据记载,这个天象仪不但运行精确,连何时会发生月蚀、日蚀都能加以预测。

阿基米德还认为地球可能是圆的。晚年阿基米德开始怀疑地球中心学说,并猜想地球有可能绕太阳转动,这个猜想一直到哥白尼时代才被人们提出来讨论。

人物著作

阿基米德流传于世的著作有10余种,多为希腊文手稿。他的著作集中探讨了求积问题,主要是曲边图形的面积和曲面立方体的体积,其体例深受欧几里德《几何原本》的影响,先是假设,再再以严谨的逻辑推论得到证明。他不断地寻求一般性原则而用于特殊的工程上。他的作品始终融合数学和物理。

数学内容
《论球和圆柱》阿基米德从定义和公理出发,推出圆和圆柱面积体积50多个命题,思想蕴含微积分。
《圆的度量》
求得圆周率π为22
  
分之7>π>223分之71。
还证明了圆面积等于圆周长为底,半径为高的等腰三角形的面积。
《抛物线求积法》研究了曲线图形求积的问题。
《论螺线》
明确螺线的定义,以及对螺线的计算方法。
导出几何级数和算数级数求和的几何方法。
《论锥型体与球型体》确定由抛物线和双曲线其轴旋转而成的锥形体体积,以及椭圆绕其长轴和轴旋转而成的球形体体积。
《数沙者》
专讲计算方法和计算理论的一本著作。建立了新的量级计数法,确定新的单位,提出表示任何大量计数的方法。
物理
《平面图形的平衡或其重心》是关于力学的最早的科学论著,提出了杠杆的思想。
《论浮体》是流体静力学的第一部专著。
《论杠杆》关于杠杆平衡的著作。

除此以外,阿基米德还有一篇非常重要的著作,是一封给埃拉托斯特尼的信,遗失后重新被发现,后来以《阿基米德方法》为名刊行于世,它主要讲研究力学原理去发现问题的方法。

古代抄本收录著作
抄本A、抄本B,不幸的是这两份抄本都已遗失
《平面图形的平衡或其重心》、《抛物线求积》、《论球和圆柱》《圆的度量》、《论螺线》、《论浮体》、《圆锥体和椭球体》、《数沙者》
1998年第三份抄本抄本C遗失后重新被发现《平面图形的平衡或其重心》、《论球和圆柱》、《测圆术》、《论螺线》、《论浮体》、《方法论》、《十四巧板》。其中前5篇已经从抄本AB承传了下来,而最为珍贵的是最后两篇,这是以前没有出现过的。

人物评价

阿基米德雕塑阿基米德雕塑

阿基米德对数学和物理的发展做出了巨大的贡献,为社会进步和人类发展做出了不可磨灭的影响,即使牛顿和爱因斯坦也都曾从他身上汲取过智慧和灵感,他是“理论天才与实验天才合于一人的理想化身”,文艺复兴时期的达芬奇和伽利略等人都拿他来做自己的楷模。

后世缅怀

事过境迁,叙拉古人竟不知珍惜这非凡的纪念物,随着时间的流逝,阿基米德的陵墓被荒草湮没了。

后来西西里岛的著名政治家西塞罗游历叙拉古时有心去凭吊这位伟人的墓,众人借助镰刀辟开小径,发现一座高出杂树不多的小圆柱,上面刻着的球和圆柱图案赫然在目,这久已被遗忘的寂寂孤坟终于被找到了,墓志铭仍依稀可见,大约有一半已被风雨腐蚀,依此辩认出这就是阿基米德的坟墓,并将它重新修复了。

又两千年过去了,随着时光的流逝,这座墓也消失得无影无踪。有一个人工凿砌的石窟,宽约十余米,内壁长满青苔,被说成是阿基米德之墓,但却无任何能证明其真实性的标志,而且不时有“发现真正墓地”的消息,令人难辨真伪。

附件列表


0

故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本故事还有待完善,请 编辑

上一篇 方岑    下一篇 安德鲁·克雷斯伯格

同义词

暂无同义词
  • 友情链接:
  • 中原企业家
  • 华锐社区
  • 法学学习
  • 故事库
  • 舆情信息
  • 郑州商业观察
  • 美丽中国
  • 药食同源
  • Lovely China
  • 纯欲天花板
  • 留学生