电解水
- 中文名
- 电解水
- 外文名
- electrolysisofwater
- 含义
- 水(H2O)被电解生成氢气和氧气
- 方程式
- 2H2O——(通电)2H2↑+O2↑
目录
最早于1789年,杨-鲁道夫-德曼和阿德里安-派斯-范-特鲁斯维克通过静电装置发电利用金电极把莱顿瓶中的水电解成气体。1800年, 亚历山德罗-伏特发明了伏打电池,并于数周后,被威廉-尼克森和安东尼-卡莱尔用于电解水。1869年格拉姆发明直流发电机后,电解水逐渐引人关注成为一种廉价制氢的方法。
最简单的电解水装置通常包括电源,两个电极(阴极和阳极)和电解液(主要是水)。水在阴极得到电子被还原形成氢气,而水在阳极失去电子被氧化形成氧气。
(因格式问题,反应式用截图插入)
在100%法拉第效率(又称”电流效率“)的情况下,即电能100%转化成化学能,氢气产生量为氧气产生量的两倍,且产生的气体量与通过的电量成正比。但是,实际情况下,由于许多副反应的参与,法拉第效率会降低并产生一定量的副产物。
在标准大气压和温度下,阳极上析氧反应的电极电势为1.23 V,阴极上析氢反应的电极电势为0.00 V,因此在一个大气压和25 oC下,电解水所需要的理论最小电压为1.23 V。[1] 基于能斯特方程,电解水的理论电压不受电解液的酸碱度(pH)影响。虽然理论上热力学决定的电解水最小电压为1.23 V,但是由于阴极和阳极反应都牵涉到多步电子转移的过程,而每个电子转移过程都会引入反应动力学能垒(活化能)。这些活化能的叠加会导致实际电解水的电压远大于1.23 V,而这部分多施加的电压被称为过电势。除了活化能之外,离子转移率,电导性,表面气泡的通畅性以及反应熵都会导致更大的过电势。
催化剂通常能使电解水的活化能大大降低,从而降低电解水的过电势。催化剂的优劣决定了电解水所需要的总电压以及电能转换为氢能的转化效率。比如,两根石墨电极组成的电解池通常需要大于2 V的电压才能产生氢气和氧气,因为石墨不是理想的催化剂,而两片不锈钢电极组成的电解池需要大约1.6-1.8V的电压就能产生氢气和氧气。研究新型的催化剂来增加能量转换效率是能源领域十分受关注的焦点。
在酸性环境中,铂是析氢反应的催化剂,几乎没有任何过电势以及非常小的塔菲尔斜率(电流增加10倍所需要的额外电压),是几乎理想化的催化剂,但是由于铂贵金属资源稀缺,科学家正在寻找一些廉价催化剂(过渡金属硫化物,碳化物以及磷化物)。氧化铱是析氧反应的催化剂,但是同样依赖于稀缺资源,同时由于高电位以及酸性环境,极少物质能能同时展现析氧反应催化活性和稳定性,所以目前为止还没有找到氧化铱的替代品。
在碱性环境中,铂和氧化铱依然是很好的催化剂,但是由于氧化物和氢氧化物在碱性环境的稳定性,能有更多低原子数过渡金属化物的选择。比如,镍基合金展现出了优良的析氢反应的催化活性和稳定性,镍铁基复合材料和一些钙钛矿材料展现出了优良的析氧反应的催化活性。
基于其高能量密度及零排放(不排放任何温室效应气体),氢气已被列为潜在的清洁能源燃料,同时氢燃料可以通过氢燃料电池的方式驱动各类电子设备及电驱动车。随着氢燃料的飞速发展,电解制氢也逐渐步入工业化取代传统的蒸汽重整制氢的方法来消除对天然气的依赖性同时又减少成本增加氢燃料纯度。
现有的工业化电解制氢方法主要有两种:碱性电解水制氢,聚合物电解质电解水制氢。前者通常使用较廉价的电极材料,但工作电流较低,镍钴铁复合材料作为阳极,镍基材料作为阴极,高浓度的氢氧化钠或氢氧化钾溶液作为电解液,工作温度为60-80度,工作电流为0.2-0.4 A/cm2,氢气产生量为<760 N m3/h。后者由于酸性环境通常使用贵金属作为催化剂,但工作电流较高,氧化铱作为阳极,铂作为阴极,工作温度为50-80度,工作电流为0.6-2.0 A/cm2,氢气产生量大约为30 N m3/h。
电解水工业化还处于发展阶段,仍有许多问题需要处理。比如,通常电解槽需要高纯度的淡水资源,直接用海水会导致电极腐蚀和效率降低,而电解海水的氯碱工业需要更高的电压来实现氢气的制备,如何实现电解海水将极大地推动电解水工业化的步伐。
附件列表
故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。