故事库-中国往事  > 所属分类  > 
[0] 评论[0] 编辑

可控核聚变

核聚变是两个较轻的原子核聚合为一个较重的原子核,并释放出能量的过程。自然界中最容易实现的聚变反应是氢的同位素——氘与氚的聚变,这种反应在太阳上已经持续了50亿年。可控核聚变俗称人造太阳,因为太阳的原理就是核聚变反应。(核聚变反应主要借助氢同位素。核聚变不会产生核裂变所出现的长期和高水平的核辐射,不产生核废料,当然也不产生温室气体,基本不污染环境)人们认识热核聚变是从氢弹爆炸开始的。科学家们希望发明一种装置,可以有效控制“氢弹爆炸”的过程,让能量持续稳定的输出。
中文名
可控核聚变
外文名
Controlled nuclear fusion
趣    称
“人造太阳” 核心装置 “托克马克装置”
原    理
产生环形磁场
国际组织
国际热核聚变实验堆

目录

简介

核聚变核聚变

核能包括

利用核能的最终目标是要实现受控核聚变。裂变时靠原子核分裂而释出能量。聚变时则由较轻的原子核聚合成较重的原子核而释出能量。最常见的是由氢的同位素氘(读"",又叫重氢)和氚(读"",又叫超重氢)聚合成较重的原子核如氦而释出能量。核聚变较之核裂变有两个重大优点。一是地球上蕴藏的核聚变能远比核裂变能丰富得多。据测算,每升海水中含有0.03克氘,所以地球上仅在海水中就有45万亿吨氘。1升海水中所含的氘,经过核聚变可提供相当于300升汽油燃烧后释放出的能量。地球上蕴藏的核聚变能约为蕴藏的可进行核裂变元素所能释出的全部核裂变能的1000万倍,可以说是取之不竭的能源。至于氚,虽然自然界中不存在,但靠中子同锂作用可以产生,而海水中也含有大量锂。第二个优点是既干净又安全。因为它不会产生污染环境的放射性物质,所以是干净的。同时受控核聚变反应可在稀薄的气体中持续地稳定进行,所以是安全的。实现核聚变已有不少方法。最早的著名方法是"托卡马克"型磁场约束法。它是利用通过强大电流所产生的强大磁场,把等离子体约束在很小范围内以实现上述三个条件。虽然在实验室条件下已接近•,但要达到工业应用还差得远。按照现有的技术水平,要建立托卡马克型核聚变装置,需要几千亿美元。另一种实现核聚变的方法是惯性约束法。惯性约束核聚变是把几毫克的氘和氚的混合气体或固体,装入直径约几毫米的小球内。从外面均匀射入激光束或粒子束,球面因吸收能量而向外蒸发,受它的反作用,球面内层向内挤压(反作用力是一种惯性力,靠它使气体约束,所以称为惯性约束),就像喷气飞机气体往后喷而推动飞机前飞一样,小球内气体受挤压而压力升高,并伴随着温度的急剧升高。当温度达到所需要的点火温度(大概需要几十亿度)时,小球内气体便发生爆炸,并产生大量热能。这种爆炸过程时间很短,只有几个皮秒(1皮等于1万亿分之一秒)。如每秒钟发生三四次这样的爆炸并且连续不断地进行下去,所释放出的能量就相当于百万千瓦级的发电站。原理上虽然就这么简单,但是现有的激光束或粒子束所能达到的功率,离需要的还差几十倍、甚至几百倍,加上其他种种技术上的问题,使惯性约束核聚变仍是可望而不可及的。尽管实现受控热核聚变仍有漫长艰难的路程需要我们征服,但其美好前景的巨大诱惑力,正吸引着各国科学家在奋力攀登。

具体实现方式

TOKAMAK

为实现磁力约束,需要一个能产生足够强的环形磁场的装置,这种装置就被称作“托克马克装置”——TOKAMAK,也就是俄语中是由“环形”、“真空”、“磁”、“线圈”的字头组成的缩写。早在1954年,在原苏联库尔恰托夫原子能研究所就建成了世界上第一个托卡马克装置。貌似很顺利吧?其实不然,要想能够投入实际使用,必须使得输入装置的能量远远小于输出的能量才行,我们称作能量增益因子——Q值。当时的托卡马克装置是个很不稳定的东西,搞了十几年,也没有得到能量输出,直到1970年,前苏联才在改进了很多次的托卡马克装置上第一次获得了实际的能量输出,不过要用当时最高级设备才能测出来,Q值大约是10亿分之一。别小看这个十亿分之一,这使得全世界看到了希望,于是全世界都在这种激励下大干快上,纷纷建设起自己的大型托卡马克装置,欧洲建设了联合环-JET,苏联建设了T20(后来缩水成了T15,线圈小了,但是上了超导),日本的JT-60和美国的TFTR(托卡马克聚变实验反应器的缩写)。这些托卡马克装置一次次把能量增益因子(Q)值的纪录刷新,1991年欧洲的联合环实现了核聚变史上第一次氘-氚运行实验,使用61的氘氚混合燃料,受控核聚变反应持续了2秒钟,获得了0.17万千瓦输出功率,Q值达0.121993年,美国在TFTR上使用氘、氚11的燃料,两次实验释放的聚变能分别为0.3万千瓦和0.56万千瓦,Q值达到了0.2819979月,联合欧洲环创1.29万千瓦的世界纪录,Q值达0.60,持续了2秒。仅过了39天,输出功率又提高到1.61万千瓦, Q值达到0.65。三个月以后,日本的JT60上成功进行了氘-氘反应实验,换算到氘-氚反应,Q值可以达到1。后来,Q值又超过了1.25。这是第一次Q值大于1,尽管氘-氘反应是不能实用的(这个后面再说),但是托卡马克理论上可以真正产生能量了。在这个大环境下,中国也不例外,在70年代就建设了数个实验托卡马克装置——环流一号(HL-1)和CT-6,后来又建设了HT-6,HT-6B,以及改建了HL1M,新建了环流2号。有种说法,说中国的托卡马克装置研究是从俄罗斯赠送设备开始的,这是不对的,HT6/HL1的建设都早于俄罗斯赠送的HT-7系统。HT-7以前,中国的几个设备都是普通的托卡马克装置,而俄罗斯赠送的HT-7则是中国第一个“超脱卡马克”装置。什么是“超托卡马克装置”呢?回过头来说,托卡马克装置的核心就是磁场,要产生磁场就要用线圈,就要通电,有线圈就有导线,有导线就有电阻。托卡马克装置越接近实用就要越强的磁场,就要给导线通过越大的电流,这个时候,导线里的电阻就出现了,电阻使得线圈的效率降低,同时限制通过大的电流,不能产生足够的磁场。托卡马克貌似走到了尽头。幸好,超导技术的发展使得托卡马克峰回路转,只要把线圈做成超导体,理论上就可以解决大电流和损耗的问题,于是,使用超导线圈的托卡马克装置就诞生了,这就是超托卡马克。目前为止,世界上有4个国家有各自的大型超托卡马克装置,法国的ToreSupra,俄罗斯的T-15,日本的JT-60U,和中国的EAST。除了EAST以外,其他四个大概都只能叫“准超托卡马克”,它们的水平线圈是超导的,垂直线圈则是常规的,因此还是会受到电阻的困扰。此外他们三个的线圈截面都是圆形的,而为了增加反应体的容积,EAST则第一次尝试做成了非圆型截面。此外,在建的还有德国的螺旋石-7,规模比EAST大,但是技术水平差不多。

ITER

2005年正式确定的国际合作项目ITER,也就是国际热核实验反应堆的缩写,这个项目从1985年开始,由苏联、美国、日本和欧共同提出,目的是建立第一个试验用的聚变反应堆。(注意:ITER已经不是托卡马克装置了,而是试验反应堆,这是一大进步)最初方案是2010年建成一个实验堆,实现1500兆瓦功率输出,造价100亿美元。没想到因为各国想法不同,苏联解体,加上技术手段的限制,一直到了2000年也没有结果,其间美国中途退出,ITER出现胎死腹中的危险。直到2003年,能源危机加剧,各国又重视起来,首先是中国宣布加入了ITER计划,欧洲、日本和俄罗斯自然很高兴,随后美国宣布重返计划。紧接着,韩国和印度也宣布加入。

2005ITER正式立项,地点在法国的卡达拉申,基本设计不变,力争2015年前全面完成,造价120亿美元,欧盟出40%,法、中、日、美各出10%,剩下的想让别人平摊,韩国印度不干,力争让俄国也出10%,自己出5%(最终美、日、俄、中、韩、印各出约9%)。ITER凑巧是拉丁语“道路”,可见大家对这个东西抱有多大的希望。很有可能,她就是人类解决能源问题的“道路”。如果ITER能成功,下一步就是利用ITER的技术,设计和建造示范商用堆,到那时,离真正的商业核聚变发电就不远了。但是ITER建设中,还有大量的技术问题需要解决,需要有一个原型可以参考,在此基础上,各国的先进超脱卡马克装置就成了设计ITER的蓝本。ITER的研究远非一个托卡马克装置,它还有很多难题需要攻克,地雷战里说“各村有各村的高招”,日本的外围设备研究就远远走在了其他国家前面,他们在托卡马克点火领域就很先进,不用高压变压器,直接使用高频电流制造核聚变点火的高温等离子体电流,就已经在日本试验成功了,大功率激光点火也接近完善。

EAST

EAST位于中国合肥,是目前为止,超托卡马克反应体部分,唯一能给ITER提供实验数据的装置,他的结构和应用的技术与规划中的ITER完全一样,没有的仅仅是换能部分。EAST解决了几个重要问题:第一次采用了非圆型垂直截面,目的是在不增加环形直径的前提下增加反应体的体积,提高磁场效率。第一次全部采用了液氦无损耗的超导体系。液氦是很贵的,只有在线圈材料上下功夫,尽量少用液氦,同时让液氦可以循环使用,尽量减少损耗的系统才可能投入实用。此外,EAST还是世界上第一个具有主动冷却结构的托卡马克,它的第一壁是主动冷却的,连接的是一个大型冷却塔,它的冷却水可以保证在长时间运行后将反应产生的热量带走,维持系统的温度平衡,一方面是为真正实现稳定的受控聚变迈出的重要一步,另一方面也是工程化的重要标志——冷却塔换成汽轮机是可以发电的。结合一些相关资料,世界这个领域普遍认为EAST将是第一个能长时间稳定运行的,Q值能达到1的托卡马克装置,当然这可能还要1-2年的时间。就EAST来说,从某种意义上,它就是ITER主反应体大约1/4的一个原型实验装置。

新发展方向

人类没有被一个ITER限定死,很多可控核聚变领域的研究也层出不穷。前几年出现了冷核聚变的说法,就是将氘代丙酮以一定的频率进行震动,发现产生的微小气泡里面产生了核聚变,还有一部以此为背景的电影《圣徒》,但是目前看来,由于被认为不可重现,缺乏理论依据,基本可以认定是伪科学了。另外托克马克也不都是环形的,长径比到一定程度,就出现了球形的装置,造价低,有效截面大,很可能是未来的发展方向,顺便说一下,离我不到500米,就有一台这个设备——科学院物理所的SUNIST。此外,惯性约束核聚变也是一个很有前途的方向,实际上我认为惯性约束的思想很聪明,它实际上就是用很多小型的非受控核聚变实现总体的受控核聚变,它的结构要比磁性约束简单很多,它也是一个重点地研究领域,在新闻中看到的国内的新型的大型激光器什么的,绝大多数是用于此。

中国

中国在这个领域有先天的优势,加上机遇很好,走到世界第一集团,不是偶然的。说先天优势,是因为我们有王淦昌先生这样一批理论上的大师,使得我们的基础并不落后。国家对于能源的重视不是一天两天了,自1956年的12年科学规划以来,核聚变的研究已经进行了半个世纪,积累了大量的经验。还有一个祖宗留给我们的好礼物:内蒙古白云鄂博的稀土资源。它使得我们的超导工艺和激光技术并不落后——这可是受控核聚变的重要组成部分。说我们机遇好,一方面是当年苏联解体,俄罗斯贱卖家底,我们得到了俄国的HT-7超脱卡马克,使我们跨越性的认识了这一系统。另一方面,国际扯皮使得ITER拖了近20年,我们赢得了追上去的机会,试想1985ITER正式开建,怎么可能有中国的事情?中国人在这个关乎人类生存的领域,总算占有了一席之地,希望能良好的发展下去,早日求得正果,若如此,不仅为华夏之福,更是寰宇之大幸也。

发展

国际热核聚变实验堆(ITER)组织正式成立

20071024日北京时间2115,国际热核聚变实验堆(ITER)组织在法国卡达拉舍(Cadarache)正式成立,这标志着目前全球规模最大的国际科技合作协议正式启动。当国际组织总干事池田要先生和第一副总干事郝特康普博士揭下“ITER国际组织”牌匾上的绸布时,会场响起热烈的掌声。

同一时刻,美国、俄罗斯、欧盟、中国、日本、韩国、印度各方的高层代表通过视频在各自国家参与了ITER国际组织举行的成立仪式。中国分会场设在合肥中国科学院等离子体所主控室,科技部基础司彭以祺副巡视员、ITER办公室罗德隆同志等与国内有关专家一起见证了这一重要历史时刻,大家纷纷举杯同贺。在此之前,ITER组织还举行了ITER技术负责人第15次会议。

20061121日,我国与欧盟、印度、日本、韩国、俄罗斯和美国共同签署了《联合实施国际热核聚变实验堆计划建立国际聚变能组织的协定》和《联合实施国际热核聚变实验堆计划国际聚变能组织特权和豁免协定》。2007831日,十届全国人大第29次常委会审议通过了上述两个协定。

ITER计划是目前全球规模最大、经费投入最多、影响最深远的重大国际科学工程之一,它吸引了世界主要国家的顶尖科学家。ITER计划的实施结果将影响人类能否大规模地使用聚变能,从而从根本上解决能源问题的进程。参与ITER计划不仅使我国在核聚变能研究方面进入世界最前沿,为我国自主地开展核聚变示范电站开发清洁高效的能源的研发奠定基础,也将推动我国核聚变科技整体水平的发展。

2012710日,中国可控核聚变实验装置获重大突破,遥遥领先世界。中科院等离子体物理研究所,东方超环(EAST)超导托卡马克2012年物理实验顺利结束。在长达四个多月的实验期间,科学家们利用低杂波和离子回旋射频波,实现多种模式的高约束等离子体、长脉冲高约束放电,自主创新能力得到较大提高、获得多项重大成果,创造了两项托卡马克运行的世界记录:

获得超过400秒的两千万度高参数偏滤器等离子体;获得稳定重复超过30秒的高约束等离子体放电。这分别是国际上最长时间的高温偏滤器等离子体放电、最长时间的高约束等离子体放电,标志着我国在稳态高约束等离子体研究方面走在国际前列。(来源:凤凰网:2012712日新闻:中国可控核聚变实验装置获重大突破遥遥领先世界)

MIT实现可控核聚变新突破

2016年10月,据英国每日邮报网站报道,一种近乎取之不尽的能源距离现实可用更近一步。美国科学家通过改良实验手段,成功制造出了破纪录的等离子压强。而等离子体的高压是实现可控核聚变关键因素之一。此举标志着受控核聚变距离成为一种实际可用的能源来源又向前迈进了一步。

由于具有清洁无污染、原料几乎取之不尽(可以直接使用海水)、安全性高等优点,核聚变被视为一种近乎用之不竭的理想能源。其原理和太阳内部的反应一致。在高温、高压和强磁场的条件下,两个质量小的原子——比方说氘和氚——会发生原子核互相聚合作用,同释放出巨大能量。核聚变技术的研究有望减轻人类对化石能源的依赖。

高压是核聚变发生的重要条件之一。麻省理工学院等离子体科学和聚变中心的研究人员目前成功在其Alcator C-Mod核聚变反应堆中实现了2.05个大气压的突破。这比上个世界纪录(产生于2005年)提高了15% 。

2.05倍的大气压相当于海平面以下10米的压力。在此压力下,反应堆内部温度可达到3500摄氏度,两倍于太阳核心的温度。据MIT News报道,在此条件下,反应堆内每立方米可发生千亿次的核聚变反应。

“这是了不起的成就!”普林斯顿等离子体物理实验室前副主任Dale Meade毫不掩饰激动之情。

除了高压之外,推动核聚变反应的能量从何而来也一直是困扰核聚变研究的问题之一。以目前的实验技术,加热反应所消耗的能量甚至大于反应释放出的能量。只有在产出(远)大于消耗时,核聚变才有可能被广泛应用。

美国之外的研究者们将希望放在ITER反应堆上。ITER目前正在法国建造,预计于2036年投入使用。届时其将成为世界最大的托卡马克反应堆,体积是MIT Alcator C-Mod反应堆的800倍。ITER被预期能够产生2.6个大气压的压力,同时创造出1.5亿度高温的反应条件。

附件列表


0

故事内容仅供参考,如果您需要解决具体问题
(尤其在法律、医学等领域),建议您咨询相关领域专业人士。

如果您认为本故事还有待完善,请 编辑

上一篇 奇妙的时光之旅    下一篇 大连希望广场

同义词

暂无同义词
  • 友情链接:
  • 中原企业家
  • 华锐社区
  • 法学学习
  • 故事库
  • 舆情信息
  • 郑州商业观察
  • 美丽中国
  • 药食同源
  • Lovely China
  • 纯欲天花板
  • 留学生